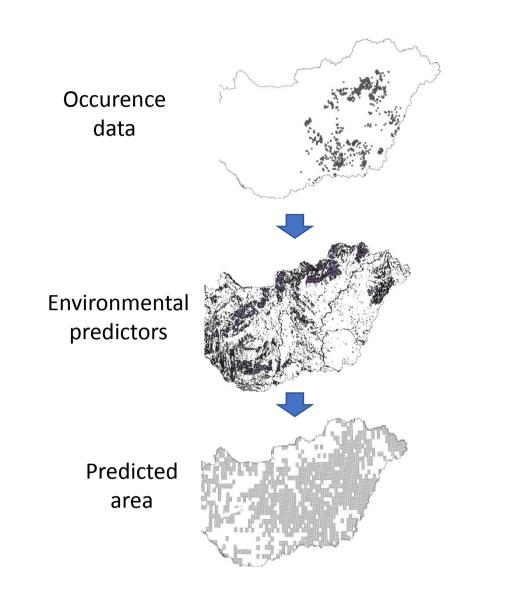


Importance of remained grassland areas for present habitat suitability of the European roller' historical breeding range in Hungary

Orsolya Kiss¹, Béla Tokody², Károly Nagy², Zsolt Végvári³


1. Faculty of Agriculture, University of Szeged, 6800 Hódmezővásárhely, Andrássy u. 15, Hungary, kiss.orsolya@mgk.u-szeged.hu

2. BirdLife Hungary, 1121, Budapest, Költő u. 21, Hungary

3. Danube Research Institute, Budapest: 1113 Budapest, Karolina út 29.

Introduction

- Decline of farmlands and grasslands' biodiversity is one the major conservation concerns nowadays.
- The European roller is a secondary cavity nester species inhabiting typically grasslands and farmlands.
- It has suffered large declines both in size and range of the population since the 1960s, but applying direct • conservation actions, this negative trend has been reversed in several countries.

Aims

- to evaluate the current suitability of historical breeding area for a nest-box program to promote the recolonization and enlargement of the breeding range in Hungary
- to examine the potential significance of the Natura 2000 network in roller conservation in Hungary by calculating overlap between the predicted areas and Nature 2000 sites in the country

Methods

- Nest-box occupancy data from 2016
- MaxEnt for species distribution modelling (SDM) (Fig.1.)

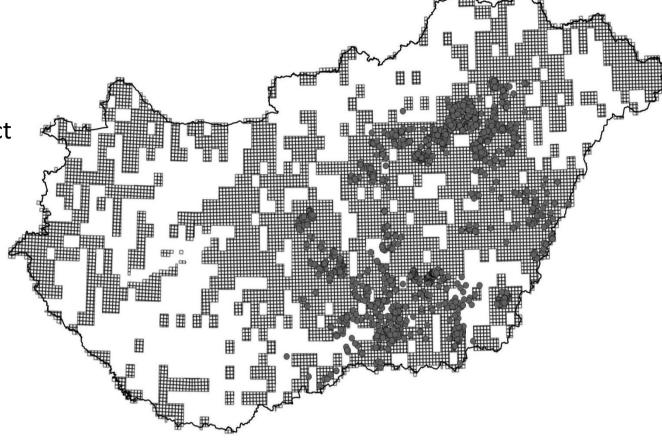


Fig 2. The locations of occupied nest-boxes used for the modelling procedure and the predicted area for roller conservation

Table 1. Statistical properties of MaxEnt model performance fitted on the occurrence points

Predictors	Training gain

0.4208

0.357

0.1233

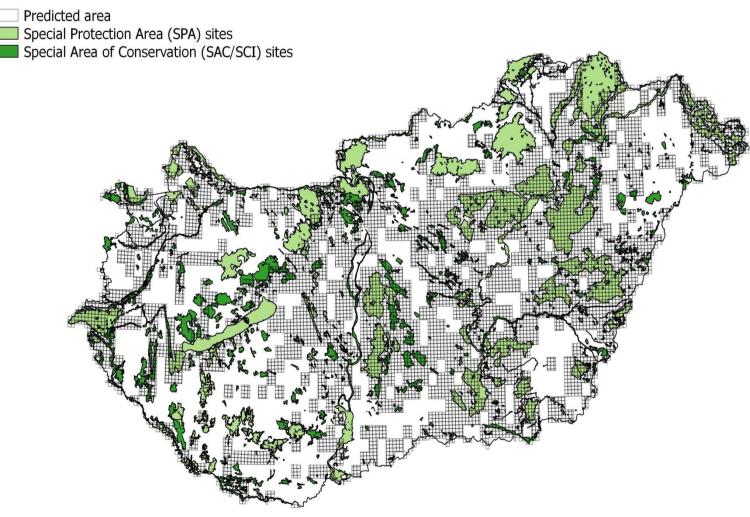
0.0922

0.0887

Fig. 1. MaxEnt modelling procedure

Legend

Fig 3. The overlaps between historical distribution range, current breeding locations and predicted areas.


Results and discussion

- Grasslands, broad-lived forests, agriculture sites with significant areas of natural ٠ vegetation were found as the most important predictors (Table 1).
- 71% of the predicted area was without current nest-box occupancy data (Fig.2.).
- Significantly larger proportion of grid cells with archive data still preserve suitable land cover composition for rollers (Fig.3.)

Permanent sensitive grasslands **Broad-leaved-forest (CLC-311)** environmental predictors: CORINE Land Cover 2015, Land principally occupied by agriculture, Copernicus high resolution forest layers, and the with significant areas of natural Hungarian Land Parcel Identification System (MePAR) vegetation e.g. scattered trees, treelines, environmentally Non irrigated arable (CLC 211) sensitive, and sensitive permanent grasslands. Tree Cover Density 2015 Inland marches (CIC 111)

Inland marshes (CLC 411)	0.0778
Black woodpecker	0.0708
Forest Type 2015	0.0641
Non sensitive permanent grasslands (2018)	0.056
Transitional woodland-scrub (CLC-324)	0.0548
Mixed forest (CLC-312)	0.0506
Fruit tree plantation (CLC-222)	0.0313
Complex cultivation patterns (CLC 242)	0.0291
Coniferous forest (CLC 312)	0.024
Green woodpecker	0.0124
Vineyards	0.011
Water bodies	0.0072
Tree lines (2018)	0.0048
Scattered trees (2018)	0.0022
AUC	0.8825

Legend

Only small proportion of former breeding area has become completely unsuitable for the species (Fig.3).

Our study highlights the significance of grasslands in preserving biodiversity of agricultural areas. Our results also suggest that coordinated network of protected areas such as Natura 2000 can potentially serve as core areas in the recolonization processes (Fig. 4.).

Fig. 4. Natura 2000 sites in Hungary and predicted area

Acknowledgements

We would like to thank the help of all national park rangers and volunteers of Birdlife Hungary who participated in the field work. We are also grateful to the national park diretorates to let us work in national park areas. We are also grateful to all volunteers participating in Hungarian Bird Atlas program and the Ministry of Agriculture for providing MePar data. This work was supported by LIFE13/NAT/HU/000081 and Orsolya Kiss was supported by the NKFI KH 130338 project.